Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
نویسندگان
چکیده
Super-antiwetting interfaces, such as superhydrophobic and superamphiphobic surfaces in air and superoleophobic interfaces in water, with special liquid-solid adhesion have recently attracted worldwide attention. Through tuning surface microstructures and compositions to achieve certain solid/liquid contact modes, we can effectively control the liquid-solid adhesion in a super-antiwetting state. In this Account, we review our recent progress in the design and fabrication of these bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Low-adhesion superhydrophobic surfaces are biologically inspired, typically by the lotus leaf. Wettability investigated at micro- and nanoscale reveals that the low adhesion of the lotus surface originates from the composite contact mode, a microdroplet bridging several contacts, within the hierarchical structures. Recently high-adhesion superhydrophobic surfaces have also attracted research attention. These surfaces are inspired by the surfaces of gecko feet and rose petals. Accordingly, we propose two biomimetic approaches for the fabrication of high-adhesion superhydrophobic surfaces. First, to mimic a sticky gecko's foot, we designed structures with nanoscale pores that could trap air isolated from the atmosphere. In this case, the negative pressure induced by the volume change of sealed air as the droplet is pulled away from surface can produce a normal adhesive force. Second, we constructed microstructures with size and topography similar to that of a rose petal. The resulting materials hold air gaps in their nanoscale folds, controlling the superhydrophobicity in a Wenzel state on the microscale. Furthermore, we can tune the liquid-solid adhesion on the same superhydrophobic surface by dynamically controlling the orientations of microstructures without altering the surface composition. The superhydrophobic wings of the butterfly (Morpho aega) show directional adhesion: a droplet easily rolls off the surface of wings along one direction but is pinned tightly against rolling in the opposite direction. Through coordinating the stimuli-responsive materials and appropriate surface-geometry structures, we developed materials with reversible transitions between a low-adhesive rolling state and a high-adhesive pinning state for water droplets on the superhydrophobic surfaces, which were controlled by temperature and magnetic and electric fields. In addition to the experiments done in air, we also demonstrated bioinspired superoleophobic water/solid interfaces with special adhesion to underwater oil droplets and platelets. In these experiments, the high content of water trapped in the micro- and nanostructures played a key role in reducing the adhesion of the oil droplets and platelets. These findings will offer innovative insights into the design of novel antibioadhesion materials.
منابع مشابه
Bioinspired TiO2 Nanostructure Films with Special Wettability and Adhesion for Droplets Manipulation and Patterning
Patterned surfaces with special wettability and adhesion (sliding, sticky or patterned superoleophobic surface) can be found on many living creatures. They offer a versatile platform for microfluidic management and other biological functions. Inspired by their precise arrangement of structure and chemical component, we described a facile one-step approach to construct large scale pinecone-like ...
متن کاملRecent Progress in Fabrication and Applications of Superhydrophobic Coating on Cellulose-Based Substrates
Multifuntional fabrics with special wettability have attracted a lot of interest in both fundamental research and industry applications over the last two decades. In this review, recent progress of various kinds of approaches and strategies to construct super-antiwetting coating on cellulose-based substrates (fabrics and paper) has been discussed in detail. We focus on the significant applicati...
متن کاملWettability of Liquid Mixtures on Porous Silica and Black Soot Layers
Sophisticated manipulation of surface roughness and solid surface energy are widely used to design super-hydrophobic layers. In this work, we designed highly porous silica layer with contact angle (CA) of 145°, and its robustness was promoted with thermal treatment. Wettability of coated layer is studied with CA measurement for different liquid surface tensions using diluted organi...
متن کاملPutative functions and functional efficiency of ordered cuticular nanoarrays on insect wings.
The putative functions and functional efficiencies of periodic nanostructures on the surface of cicada wings have been investigated by atomic force microscopy (AFM) used as a tool for imaging, manipulation, and probing of adhesion. The structures consist of hexagonal close-packed protrusions with a lateral spacing of approximately 200 nm and may have multiple functionalities. Not only do the st...
متن کاملDirect mapping of the solid-liquid adhesion energy with subnanometre resolution.
Solid-liquid interfaces play a fundamental role in surface electrochemistry, catalysis, wetting, self-assembly and biomolecular functions. The interfacial energy determines many of the properties of such interfaces, including the arrangement of the liquid molecules at the surface of the solid. Diffraction techniques are often used to investigate the structure of solid-liquid interfaces, but mea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Accounts of chemical research
دوره 43 3 شماره
صفحات -
تاریخ انتشار 2010